Investigation, simulation and real options valuation of the GOPACS flexibility market

Charel Felten

Electricity, Congestion and Flexibility

Electricity is a commodity, but different:

- non-storable
- special laws for transport

Increased congestion in European grid

→ Solution: Flexibility markets

Flexibility: "the ability to purposely deviate from a planned / normal generation or consumption pattern" 16

GOPACS

RQ1: Who / What / When / Where / Why is GOPACS?

- dutch flexibility platform
- connects grid operators (DSO) with flexibility service providers (FSP)

How it works:

- 1. DSO forecasts congestion
- Market announcement on GOPACS
- 3. Sealed-bid pay-as-bid auction
- order + counterorder + spread matched into an IDCONS
- 5. data is published

GOPACS Data

- 4 data sources
- time + price + volume data

FA Valuation

RQ2: What is the value of a flexible asset that is participating in GOPACS?

Participation with FA:

- produce more
- consume less
- consume more
- produce less

Focus on **consume less**:

- consume electricity all the time, produce good/service → buy electricity contracts on DA
- flexibility: can stop consumption → sell contracts on GOPACS
- only do so when financially sensible
- how much value can be extracted from GOPACS?

GOPACS Model

- GOPACS data hard to predict
- LightGBM regression + classification not promising
- → opted for a **stochastic** approach

GOPACS Model

Arrival-departure process:

- 2 Bernoulli processes
- represented by Markov Chain

$$lpha \sim \mathcal{B}(p_a) \quad eta \sim \mathcal{B}(p_d)$$
 $\mathcal{B}(p) = egin{cases} 1 & ext{with probability } p \ 0 & ext{else} \end{cases}$

Combined into stochastic finite-difference equation

$$\Delta X = (1 - X)\alpha - X\beta$$

$$X_{t+1} = X_t + \Delta X$$

GOPACS Model

Model price as deviation from Day-Ahead (DA) prices

$$S = S_{GO} - S_{DA}$$

Price process

- **PP1**: simple RV

- **PP2**: simulating bidding

$$\Delta S = \epsilon I(S=0)\alpha - S\beta$$

$$I(x) = \begin{cases} 1 & \text{if } x \text{ is True} \\ 0 & \text{else} \end{cases}$$

Real Options: European

$$C_E = \max(0, S - K_S) \qquad P_E = \max(0, K_b - S)$$

Real Options: Digital

$$C_D = (B_s - K_s)I(\max(B_s, K_s) < S)$$
 $P_D = (K_b - B_b)I(\min(B_b, K_b) > S)$

Results

- finding the best bid price
- various bidding strategies
- scatter-basedsensitivity analysis
- Case study in NL

FA Size		5 MW		20 MW			100 MW			
Strike		0	50	100	0	50	100	0	50	100
В	Bid	175	200	200	175	200	225	200	200	225
	Mean	61.5k	38.7k	23.5k	21.9k	14k	9k	5.37k	3.28k	1.87k
	SD	7.2k	4.49k	3.03k	2.65k	1.73k	1.01k	561	363	225
	VaR95	50.3k	31.6k	19.2k	17.3k	11.3k	7.3k	4.6k	2.77k	1.55k
	ES95	47.4k	29.8k	17.9k	16.3k	10.4k	6.98k	4.38k	2.65k	1.46k

Risks and Uncertainties

RQ3: What are the risks and uncertainties in participation in GOPACS and our valuation thereof?

- measured with VaR and ES (CVaR)
- Model Risk through assumptions
- Other risks and uncertainties

		5 MW 0
В	Bid	175
	Mean	61.5k
	SD	7.2k
	VaR95	50.3k
	ES95	47.4k

Conclusion

- investigated GOPACS
- developed a model to simulate it
- valuation of FA with real options

Questions?